Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N,N'-Bis(2-furylmethylene)-1,1'binaphthyl-2,2'-diamine

Najoua Belhaj Mbarek ElMkacher,^a* Mohamed Rzaigui^b and Faouzi Bouachir^a

^aDépartement de Chimie, Faculté des Sciences, 5019, Monastir, Tunisia, and ^bDépartement de Chimie, Faculté des Sciences, 7021, Bizerte, Tunisia Correspondence e-mail: najouahaj@yahoo.fr

Received 22 November 2007; accepted 5 December 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.062; wR factor = 0.146; data-to-parameter ratio = 12.1.

In the title compound, $C_{30}H_{20}N_2O_2$, the orientation of the furyl group may induce a variety of coordination modes with this ligand. The dihedral angle between the two naphthyl rings is 79.25 (7)°. The furyl groups make dihedral angles of 62.0 (1) and 16.3 (2)° with the attached naphthyl groups. The dihedral angle between the two furyl rings is 49.3 (2)°.

Related literature

For related literature see: Chen *et al.* (1995); Dang *et al.* (1971); Grubbs *et al.* (1977); Horner *et al.* (1968); Miyashita *et al.* (1980); Nishinaga *et al.* (1988); Pertici *et al.* (1996); Rosini *et al.* (1992); Suda *et al.* (1983); Spassky *et al.* (1996); Suga *et al.* (2003).

Experimental

Crystal data $C_{30}H_{20}N_2O_2$ $M_r = 440.48$

Monoclinic, $P2_1/n$ a = 8.2433 (2) Å b = 15.5046 (3) Å c = 17.7432 (3) Å $\beta = 91.309 (3)^{\circ}$ $V = 2267.15 (8) \text{ Å}^{3}$ Z = 4

Data collection

Enraf–Nonius TurboCAD-4 diffractometer Absorption correction: none 4133 measured reflections 4016 independent reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.063$ $wR(F^2) = 0.146$ S = 0.974016 reflections 331 parameters Mo K α radiation $\mu = 0.08 \text{ mm}^{-1}$ T = 293 (2) K $0.23 \times 0.15 \times 0.12 \text{ mm}$

1600 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ 2 standard reflections frequency: 120 min intensity decay: -1%

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.17 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.18 \text{ e } \text{\AA}^{-3}$

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* publication routines (Farrugia, 1999).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HJ2001).

References

- Chen, G. M., Chen, F. & Zhou, C. (1995). *Gaodeng Xuexiao Huaxue Xuebao*, **16**, 216–218.
- Dang, T. P. & Kagan, H. B. (1971). J. Chem. Soc. Chem. Commun. pp. 481–482. Enraf–Nonius (1994). CAD-4 EXPRESS Software. Enraf–Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Grubbs, R. H. & De Vries, R. A. (1977). Tetrahedron Lett. 22, 1879-1880.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Horner, L., Siegel, H. & Buthe, H. (1968). Angew. Chem. Int. Ed. Engl. 7, 942– 943.
- Miyashita, A., Yasuda, A., Takaya, H., Toriumi, K., Ito, T., Souchi, T. & Noyori, R. (1980). J. Am. Chem. Soc. **102**, 7932–7934.
- Nishinaga, A., Yamato, H., Abe, T., Maruyama, K. & Matsuura, T. (1988). Tetrahedron Lett. 29, 6309–6312.
- Pertici, P., DArata, F. & Rosini, C. (1996). J. Organomet. Chem. 515, 163–171. Rosini, C., Franzini, L., Raffaelli, A. & Salvadori, P. (1992). Synthesis, pp. 503– 517.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Spassky, N., Wisniewski, M., Pluta, C. & Le Borgne, A. (1996). Macromol. Chem. Phys. 197, 2627–2637.
- Suda, H., Kanoh, S., Murose, N., Goka, S. & Motoi, M. (1983). Polym. Bull. 10, 162–167.
- Suga, H., Kakehi, A., Ito, S., Ibata, T., Fudo, T., Watanabe, Y. & Kinoshita, Y. (2003). Bull. Chem. Soc. Jpn, 76, 189–199.

Acta Cryst. (2008). E64, o271 [doi:10.1107/S1600536807065750]

N,*N*'-Bis(2-furylmethylene)-1,1'-binaphthyl-2,2'-diamine

N. B. M. ElMkacher, M. Rzaigui and F. Bouachir

Comment

The importance of axially chiral ligands in catalytic asymmetric reactions is well known in the development of stereoselective hydrogenation of olefins The low enantiomeric excess induced by the first chiral monodentate phosphane ligands (Horner et al., 1968) was soon enhanced by chelating bisphosphanes (Dang et al., 1971). Axially chiral ligands were first reported in a hydrogenation reaction in 1977 and have gained ground ever since (Grubbs et al., 1977). In addition to the biaryl backbone bisphosphanes (2,2'-bis (diphenylphosphino)-1,1'-binaphthyl) (Miyashita et al., 1980), derivatives of the corresponding diamines (biphenyldiamine and binaphthyldiamine) have performed successfully in many asymmetric catalytic reactions (Rosini et al., 1992). These include stereoselective polymerizations of methacrylate (Suda et al., 1983) and lactate (Spassky et al., 1996) and numerous enantioselective modifications of olefins such as epoxidation (Nishinaga et al., 1988), aziridination (Suga et al., 2003), cyclopropanation (Chen et al., 1995) and hydrogenation (Pertici et al., 1996). With a structurally rigid binaphthyl ligand backbone, the configuration of the ligand is fixed and its axial chirality can efficiently be transmitted to the active site catalyst. We report here the crystal structure of (I) which was synthesized via condensation of the axially chiral binaphthyldiamine with the 2-furfuraldehyde. The centrosymmetric crystal structure shows that there is racemization which may occur during the reaction of condensation. The molecule of (I) has two imine groups with bond distances N1—C1 1.264 (5) Å and N2—C26 1.268 (4) Å. Each imine group is bound to a furfuryl group such that C1—C2 1.445 (5) and C26—C27 1.431 (5) Å. Variation between N—C (N1—C1 and N2—C26) and C—C (C1—C2 and C26—C27) bonds are statistically insignificant. The naphthyl rings make a dihedral angle of 79.25 (7) ° with one another. The furyl group C2C3C4C5O1 makes a dihedral angle of 62.0 (1) ° with its attached binaphthyl group. The other furyl makes a dihedral angle of 16.3 (2) ° with its binaphthyl group. The furyl groups make a dihedral angle of 49.3 (2) ° with one another.

Experimental

The title compound was obtained as follows: to a stirred solution of the 2-furfuraldehyde (0.067 g, 0.703 mmol) in absolute ethanol (10 ml) was added the enantiomerically pure 2,2'-diamino-1,1'-binaphthyl (0.1 g,0.35 mmol). The resulting suspension was heated at reflux for 24 h. The pure yellow ligand was obtained after crystallization in absolute ethanol.

Refinement

Hydrogen atoms H1, H3, H4, H5, H26, H28, H29 and H30 were located in a Fourier map and refined freely. All the other H atoms were placed in calculated positions and allowed to ride during subsequent refinement. The range of bond lengths to hydrogen is between 0.92 and 1.09 Å. U_{iso} of the H atoms were set to be equal to 1.2 U_{iso} of the parent atoms.

Figures

Fig. 1. View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are omitted.

N,*N*'-Bis(2-furylmethylene)-1,1'-binaphthyl-2,2'-diamine

Crystal data	
$C_{30}H_{20}N_2O_2$	$F_{000} = 920$
$M_r = 440.48$	$D_{\rm x} = 1.290 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 25 reflections
<i>a</i> = 8.2433 (2) Å	$\theta = 9.9 - 11.0^{\circ}$
<i>b</i> = 15.5046 (3) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 17.7432 (3) Å	T = 293 (2) K
$\beta = 91.309 \ (3)^{\circ}$	Prism, yellow
V = 2267.15 (8) Å ³	$0.23\times0.15\times0.12~mm$
Z = 4	

Data collection

Enraf–Nonius TurboCAD-4 diffractometer	$R_{\rm int} = 0.028$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.3^{\circ}$
T = 293(2) K	$h = -10 \rightarrow 10$
non–profiled ω scans	$k = 0 \rightarrow 18$
Absorption correction: none	$l = 0 \rightarrow 21$
4133 measured reflections	2 standard reflections
4016 independent reflections	every 120 min
1600 reflections with $I > 2\sigma(I)$	intensity decay: -1%

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.063$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.146$	$w = 1/[\sigma^2(F_o^2) + (0.0464P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 0.97	$(\Delta/\sigma)_{\rm max} < 0.001$

4016 reflections

 $\Delta \rho_{max} = 0.17 \text{ e Å}^{-3}$ $\Delta \rho_{min} = -0.18 \text{ e Å}^{-3}$

331 parameters

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
01	0.9295 (4)	0.7193 (2)	-0.20480 (18)	0.0883 (10)
O2	0.4942 (3)	0.94701 (19)	-0.06519 (15)	0.0583 (7)
N1	1.0080 (4)	0.7947 (2)	-0.0674 (2)	0.0614 (10)
N2	0.6396 (3)	0.7971 (2)	-0.00840 (18)	0.0503 (9)
C1	1.0368 (5)	0.8348 (3)	-0.1278 (3)	0.0640 (13)
H1	1.086 (4)	0.900 (2)	-0.128 (2)	0.077*
C2	1.0049 (5)	0.7968 (3)	-0.2010 (3)	0.0572 (11)
C3	1.0277 (6)	0.8265 (3)	-0.2713 (3)	0.0731 (15)
Н3	1.068 (5)	0.882 (3)	-0.281 (2)	0.088*
C4	0.9647 (6)	0.7628 (4)	-0.3211 (3)	0.0820 (16)
H4	0.959 (5)	0.767 (3)	-0.373 (2)	0.098*
C5	0.9084 (6)	0.7002 (4)	-0.2798 (3)	0.0917 (17)
Н5	0.863 (5)	0.635 (3)	-0.284 (2)	0.110*
C6	1.0290 (4)	0.8361 (2)	0.0035 (2)	0.0510 (11)
C7	1.1278 (5)	0.9100 (3)	0.0148 (3)	0.0685 (13)
H7	1.1838	0.9331	-0.0254	0.082*
C8	1.1413 (5)	0.9477 (3)	0.0842 (3)	0.0670 (12)
H8	1.2056	0.9965	0.0908	0.080*
С9	1.0583 (5)	0.9130 (3)	0.1462 (3)	0.0530 (11)
C10	1.0706 (5)	0.9520 (3)	0.2183 (3)	0.0677 (13)
H10	1.1338	1.0012	0.2252	0.081*
C11	0.9906 (6)	0.9180 (3)	0.2772 (3)	0.0758 (14)
H11	1.0008	0.9432	0.3247	0.091*
C12	0.8931 (5)	0.8453 (3)	0.2669 (2)	0.0688 (13)
H12	0.8363	0.8233	0.3073	0.083*
C13	0.8799 (5)	0.8062 (3)	0.1986 (2)	0.0568 (11)
H13	0.8159	0.7571	0.1930	0.068*
C14	0.9628 (4)	0.8395 (2)	0.1355 (2)	0.0461 (10)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C15	0.9504 (4)	0.7992 (2)	0.0629 (2)	0.0440 (10)
C16	0.8575 (4)	0.7176 (2)	0.05238 (19)	0.0417 (9)
C17	0.7078 (4)	0.7177 (3)	0.0167 (2)	0.0475 (10)
C18	0.6187 (5)	0.6405 (3)	0.0082 (2)	0.0637 (12)
H18	0.5171	0.6412	-0.0156	0.076*
C19	0.6821 (5)	0.5652 (3)	0.0349 (2)	0.0703 (13)
H19	0.6199	0.5152	0.0309	0.085*
C20	0.8384 (5)	0.5600 (3)	0.0684 (2)	0.0585 (11)
C21	0.9119 (7)	0.4816 (3)	0.0909 (2)	0.0769 (14)
H21	0.8541	0.4303	0.0859	0.092*
C22	1.0659 (7)	0.4800 (3)	0.1198 (3)	0.0835 (16)
H22	1.1131	0.4280	0.1346	0.100*
C23	1.1524 (6)	0.5562 (3)	0.1273 (2)	0.0754 (14)
H23	1.2581	0.5548	0.1467	0.090*
C24	1.0856 (5)	0.6329 (3)	0.1068 (2)	0.0610 (12)
H24	1.1461	0.6831	0.1129	0.073*
C25	0.9267 (5)	0.6381 (2)	0.0765 (2)	0.0472 (10)
C26	0.5987 (5)	0.8037 (3)	-0.0775 (2)	0.0540 (11)
H26	0.619 (4)	0.759 (2)	-0.1130 (19)	0.065*
C27	0.5253 (5)	0.8786 (3)	-0.1108 (2)	0.0525 (11)
C28	0.4798 (7)	0.8988 (3)	-0.1816 (3)	0.0823 (16)
H28	0.500 (5)	0.863 (3)	-0.223 (2)	0.099*
C29	0.4167 (6)	0.9820 (4)	-0.1811 (3)	0.0842 (17)
H29	0.370 (5)	1.015 (3)	-0.221 (2)	0.102*
C30	0.4264 (6)	1.0095 (3)	-0.1108 (3)	0.0713 (14)
H30	0.399 (5)	1.066 (2)	-0.082(2)	0.085*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C15	0.039 (2)	0.042 (2)	0.050 (3)	-0.0070 (19)	-0.009 (2)	0.006 (2)
O2	0.0567 (17)	0.0603 (19)	0.0581 (17)	0.0050 (16)	0.0043 (14)	0.0058 (17)
C14	0.037 (2)	0.044 (3)	0.056 (3)	-0.004 (2)	-0.013 (2)	0.004 (2)
N2	0.0426 (19)	0.057 (2)	0.051 (2)	-0.0002 (17)	-0.0076 (17)	-0.0008 (18)
C16	0.043 (2)	0.041 (2)	0.041 (2)	-0.005 (2)	-0.0010 (18)	0.0004 (19)
C6	0.048 (3)	0.047 (3)	0.058 (3)	-0.004 (2)	-0.002 (2)	0.003 (2)
C17	0.046 (2)	0.047 (3)	0.049 (3)	-0.004 (2)	-0.006 (2)	0.000(2)
N1	0.065 (2)	0.065 (2)	0.055 (2)	-0.013 (2)	0.0055 (19)	0.011 (2)
01	0.104 (3)	0.089 (3)	0.073 (2)	-0.031 (2)	0.0025 (19)	0.001 (2)
C9	0.045 (3)	0.045 (3)	0.068 (3)	-0.004 (2)	-0.014 (2)	-0.002 (2)
C18	0.058 (3)	0.053 (3)	0.079 (3)	-0.011 (3)	-0.014 (2)	-0.009 (2)
C27	0.055 (3)	0.055 (3)	0.047 (3)	-0.008 (2)	-0.009 (2)	0.007 (2)
C12	0.080 (3)	0.073 (3)	0.053 (3)	-0.006 (3)	-0.005 (2)	-0.010 (3)
C25	0.055 (3)	0.043 (3)	0.044 (2)	-0.006 (2)	-0.001 (2)	0.000 (2)
C2	0.056 (3)	0.050 (3)	0.066 (3)	-0.002 (2)	0.009 (2)	0.007 (3)
C26	0.049 (3)	0.059 (3)	0.053 (3)	-0.005 (2)	-0.003 (2)	-0.009 (2)
C20	0.068 (3)	0.053 (3)	0.055 (3)	-0.009 (3)	0.001 (2)	0.002 (2)
C8	0.051 (3)	0.056 (3)	0.094 (4)	-0.015 (2)	-0.007 (3)	-0.008 (3)

C13	0.062 (3)	0.051 (3)	0.057 (3)	-0.008 (2)	-0.007 (2)	0.000 (2)
C24	0.068 (3)	0.055 (3)	0.059 (3)	0.006 (2)	-0.016 (2)	0.005 (2)
C1	0.071 (3)	0.055 (3)	0.066 (3)	0.001 (3)	0.010 (3)	-0.005 (3)
C7	0.059 (3)	0.063 (3)	0.084 (4)	-0.021 (2)	0.007 (3)	0.005 (3)
C30	0.066 (3)	0.067 (3)	0.081 (4)	0.005 (3)	0.009 (3)	0.024 (3)
C11	0.089 (4)	0.072 (4)	0.065 (3)	-0.002 (3)	-0.019 (3)	-0.015 (3)
C10	0.067 (3)	0.051 (3)	0.084 (3)	-0.009 (2)	-0.024 (3)	-0.011 (3)
C21	0.117 (4)	0.049 (3)	0.065 (3)	-0.003 (3)	0.004 (3)	0.009 (2)
C23	0.085 (3)	0.064 (3)	0.076 (3)	0.010 (3)	-0.017 (3)	0.008 (3)
C19	0.079 (3)	0.048 (3)	0.084 (3)	-0.022 (3)	-0.002 (3)	-0.003 (3)
C29	0.089 (4)	0.081 (4)	0.082 (4)	-0.009 (3)	-0.025 (3)	0.026 (3)
C5	0.095 (4)	0.110 (5)	0.071 (4)	-0.016 (4)	-0.001 (3)	-0.014 (4)
C4	0.073 (3)	0.115 (5)	0.058 (3)	0.016 (3)	0.010 (3)	0.003 (4)
C3	0.092 (4)	0.062 (3)	0.067 (3)	0.005 (3)	0.023 (3)	0.010 (3)
C28	0.112 (4)	0.071 (4)	0.062 (4)	0.000 (3)	-0.013 (3)	0.001 (3)
C22	0.115 (5)	0.067 (4)	0.068 (3)	0.028 (4)	-0.003 (3)	0.017 (3)

Geometric parameters (Å, °)

С15—С6	1.374 (5)	C26—H26	0.95 (3)
C15—C14	1.434 (5)	C20—C19	1.409 (5)
C15—C16	1.488 (5)	C20—C21	1.413 (6)
O2—C27	1.363 (4)	C8—C7	1.366 (5)
O2—C30	1.373 (5)	C8—H8	0.9300
C14—C9	1.395 (5)	С13—Н13	0.9300
C14—C13	1.421 (5)	C24—C23	1.357 (5)
N2—C26	1.268 (4)	C24—H24	0.9300
N2—C17	1.421 (4)	C1—H1	1.09 (4)
C16—C17	1.374 (4)	С7—Н7	0.9300
C16—C25	1.420 (5)	C30—C29	1.320 (6)
C6—C7	1.418 (5)	С30—Н30	1.04 (4)
C6—N1	1.420 (4)	C11—C10	1.356 (6)
C17—C18	1.410 (5)	C11—H11	0.9300
N1—C1	1.264 (5)	C10—H10	0.9300
O1—C2	1.354 (5)	C21—C22	1.359 (6)
O1—C5	1.370 (5)	C21—H21	0.9300
С9—С8	1.415 (5)	C23—C22	1.385 (6)
C9—C10	1.416 (5)	С23—Н23	0.9300
C18—C19	1.361 (5)	С19—Н19	0.9300
C18—H18	0.9300	C29—C28	1.392 (6)
C27—C28	1.339 (5)	С29—Н29	0.95 (4)
C27—C26	1.431 (5)	C5—C4	1.308 (7)
C12—C13	1.357 (5)	С5—Н5	1.08 (4)
C12—C11	1.394 (5)	C4—C3	1.416 (7)
C12—H12	0.9300	C4—H4	0.92 (4)
C25—C24	1.407 (5)	С3—Н3	0.94 (4)
C25—C20	1.418 (5)	C28—H28	0.93 (4)
C2—C3	1.348 (5)	C22—H22	0.9300
C2-C1	1.445 (5)		

C6—C15—C14	118.8 (4)	C12—C13—H13	119.6
C6—C15—C16	120.6 (3)	C14—C13—H13	119.6
C14—C15—C16	120.6 (4)	C23—C24—C25	121.4 (4)
C27—O2—C30	106.2 (3)	C23—C24—H24	119.3
C9—C14—C13	118.0 (4)	C25—C24—H24	119.3
C9—C14—C15	120.4 (4)	N1—C1—C2	121.8 (4)
C13—C14—C15	121.6 (4)	N1—C1—H1	122 (2)
C26—N2—C17	117.9 (3)	C2—C1—H1	115.8 (19)
C17—C16—C25	119.3 (3)	C8—C7—C6	120.5 (4)
C17—C16—C15	120.8 (3)	С8—С7—Н7	119.8
C25-C16-C15	119.9 (3)	С6—С7—Н7	119.8
C15—C6—C7	120.6 (4)	C29—C30—O2	110.1 (5)
C15—C6—N1	116.2 (4)	С29—С30—Н30	136 (2)
C7—C6—N1	123.2 (4)	O2-C30-H30	114 (2)
C16—C17—C18	120.6 (4)	C10-C11-C12	120.2 (4)
C16—C17—N2	119.3 (3)	C10-C11-H11	119.9
C18—C17—N2	120.0 (3)	C12-C11-H11	119.9
C1—N1—C6	120.5 (4)	C11—C10—C9	120.2 (4)
C2—O1—C5	106.8 (4)	C11-C10-H10	119.9
C14—C9—C8	119.1 (4)	С9—С10—Н10	119.9
C14—C9—C10	120.1 (4)	C22—C21—C20	120.9 (5)
C8—C9—C10	120.9 (4)	C22—C21—H21	119.6
C19—C18—C17	119.8 (4)	C20—C21—H21	119.6
C19—C18—H18	120.1	C24—C23—C22	121.2 (4)
C17—C18—H18	120.1	С24—С23—Н23	119.4
C28—C27—O2	108.8 (4)	С22—С23—Н23	119.4
C28—C27—C26	133.2 (5)	C18—C19—C20	122.4 (4)
O2—C27—C26	118.0 (4)	С18—С19—Н19	118.8
C13—C12—C11	120.9 (4)	С20—С19—Н19	118.8
C13—C12—H12	119.6	C30—C29—C28	106.9 (5)
C11—C12—H12	119.6	С30—С29—Н29	123 (3)
C24—C25—C20	117.4 (4)	С28—С29—Н29	130 (3)
C24—C25—C16	121.9 (4)	C4—C5—O1	110.2 (5)
C20-C25-C16	120.6 (4)	С4—С5—Н5	142 (2)
C3—C2—O1	109.3 (4)	O1—C5—H5	107 (2)
C3—C2—C1	131.9 (5)	C5—C4—C3	107.3 (5)
O1—C2—C1	118.7 (4)	С5—С4—Н4	127 (3)
N2-C26-C27	124.5 (4)	C3—C4—H4	126 (3)
N2—C26—H26	122 (2)	C2—C3—C4	106.4 (4)
С27—С26—Н26	113 (2)	С2—С3—Н3	123 (3)
C19—C20—C21	123.4 (4)	С4—С3—Н3	130 (3)
C19—C20—C25	117.2 (4)	C27—C28—C29	107.9 (5)
C21—C20—C25	119.4 (4)	С27—С28—Н28	123 (3)
С7—С8—С9	120.5 (4)	С29—С28—Н28	129 (3)
С7—С8—Н8	119.7	C21—C22—C23	119.7 (5)
С9—С8—Н8	119.7	C21—C22—H22	120.2
C12—C13—C14	120.7 (4)	С23—С22—Н22	120.2
C6—C15—C14—C9	-2.4(5)	C16—C25—C20—C19	0.8 (5)
C16—C15—C14—C9	176.0 (3)	C24—C25—C20—C21	0.2 (5)

C6-C15-C14-C13	177.8 (3)	C16-C25-C20-C21	178.3 (4)
C16—C15—C14—C13	-3.8 (5)	C14—C9—C8—C7	0.3 (6)
C6—C15—C16—C17	-76.0 (5)	C10-C9-C8-C7	-179.5 (4)
C14—C15—C16—C17	105.6 (4)	C11—C12—C13—C14	-1.2 (6)
C6-C15-C16-C25	101.2 (4)	C9—C14—C13—C12	0.3 (5)
C14—C15—C16—C25	-77.2 (4)	C15—C14—C13—C12	-179.9 (4)
C14—C15—C6—C7	3.3 (5)	C20—C25—C24—C23	0.3 (6)
C16—C15—C6—C7	-175.1 (4)	C16—C25—C24—C23	-177.8 (4)
C14—C15—C6—N1	-178.1 (3)	C6—N1—C1—C2	-175.2 (4)
C16—C15—C6—N1	3.5 (5)	C3—C2—C1—N1	-179.0 (5)
C25—C16—C17—C18	4.0 (5)	O1-C2-C1-N1	5.7 (7)
C15—C16—C17—C18	-178.7 (4)	C9—C8—C7—C6	0.6 (6)
C25—C16—C17—N2	-179.1 (3)	C15—C6—C7—C8	-2.5 (6)
C15—C16—C17—N2	-1.8 (5)	N1—C6—C7—C8	179.1 (4)
C26—N2—C17—C16	124.2 (4)	C27—O2—C30—C29	-0.4 (5)
C26—N2—C17—C18	-58.9 (5)	C13-C12-C11-C10	1.7 (7)
C15—C6—N1—C1	160.8 (4)	C12-C11-C10-C9	-1.3 (6)
C7—C6—N1—C1	-20.7 (6)	C14-C9-C10-C11	0.4 (6)
C13—C14—C9—C8	-179.6 (3)	C8—C9—C10—C11	-179.9 (4)
C15—C14—C9—C8	0.6 (5)	C19—C20—C21—C22	177.0 (4)
C13—C14—C9—C10	0.1 (5)	C25—C20—C21—C22	-0.3 (6)
C15—C14—C9—C10	-179.6 (3)	C25—C24—C23—C22	-0.7 (7)
C16—C17—C18—C19	-0.6 (6)	C17-C18-C19-C20	-2.8 (6)
N2-C17-C18-C19	-177.5 (4)	C21—C20—C19—C18	-174.6 (4)
C30—O2—C27—C28	0.6 (5)	C25-C20-C19-C18	2.7 (6)
C30—O2—C27—C26	179.4 (3)	O2—C30—C29—C28	0.1 (6)
C17—C16—C25—C24	173.9 (3)	C2—O1—C5—C4	-1.1 (6)
C15—C16—C25—C24	-3.4 (5)	O1—C5—C4—C3	0.5 (7)
C17—C16—C25—C20	-4.1 (5)	O1—C2—C3—C4	-0.9 (5)
C15—C16—C25—C20	178.6 (3)	C1—C2—C3—C4	-176.6 (5)
C5—O1—C2—C3	1.2 (5)	C5—C4—C3—C2	0.2 (6)
C5-01-C2-C1	177.5 (4)	O2—C27—C28—C29	-0.5 (6)
C17—N2—C26—C27	178.6 (3)	C26—C27—C28—C29	-179.1 (4)
C28-C27-C26-N2	177.2 (5)	C30—C29—C28—C27	0.2 (6)
O2-C27-C26-N2	-1.4 (6)	C20—C21—C22—C23	-0.1 (7)
C24—C25—C20—C19	-177.3 (4)	C24—C23—C22—C21	0.6 (7)

